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Abstract

Many classifications of attacks have been tendered, often in taxonomic form. A
common basis of these taxonomies is that they have been framed from the perspec-
tive of an attacker – they organize attacks with respect to the attacker’s goals, such
as privilege elevation from user to root (from the well known Lincoln taxonomy).
Taxonomies based on attacker goals are attack-centric; those based on defender
goals are defense-centric. Defenders need a way of determining whether or not
their detectors will detect a given attack. It is suggested that a defense-centric
taxonomy would suit this role more effectively than an attack-centric taxonomy.
This paper presents a new, defense-centric attack taxonomy, based on the way that
attacks manifest as anomalies in monitored sensor data.

Unique manifestations, drawn from 25 attacks, were used to organize the tax-
onomy, which was validated through exposure to an intrusion-detection system,
confirming attack detectability. The taxonomy’s predictive utility was compared
against that of a well-known extant attack-centric taxonomy. The defense-centric
taxonomy is shown to be a more effective predictor of a detector’s ability to de-
tect specific attacks, hence informing a defender that a given detector is competent
against an entire class of attacks.

i
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1 Introduction

There are many taxonomies of computer attacks (see, for example, [1, 3, 8, 9, 10,
11, 12, 14, 16, 30], and others; several are nicely surveyed in [17]). Although it
was undoubtedly not their creators’ intention, these taxonomies tend to serve the
interests of attackers, as well as their original goals of providing organizational
structure for classifying attacks. These and other similar taxonomies are attack-
centric – they represent and classify attacks from an attacker’s perspective. For
example, the well-known MIT Lincoln Laboratory taxonomy [16] groups a number
of attacks into a category called user-to-root. An attacker can choose attacks from
this group to achieve the goal of elevating himself from user to root on the victim
system. If the selected attack fails, another can be chosen from the same user-to-
root taxonomic class, and then yet another, until the attacker’s objective is achieved.
In this sense, attack-centric taxonomies may constitute as much or more of a boon
for the attacker as for the defender.

An important and sensible goal for an attack taxonomy, however, should be to
help the defender. Much more useful to a defender than an attack-centric taxonomy
would be a taxonomy of attacks arranged to aid the defender – a defense-centric
taxonomy. Such a taxonomy would classify attacks in a way that groups together
those attacks that could be defended against similarly. For example, it would be
enormously useful to know that any attack in a given class could be detected by the
same detector; if one attack in a class can be detected, they can all be detected. In
such a case, when a new attack emerges, and it falls into a given class, it will be
clear either that it can be detected with extant detectors, or that a new detector will
need to be written.

This paper shows how a defense-centric attack taxonomy was constructed, in
accordance with taxonomic rules, using attack manifestations – how attacks ap-
pear in sensor-stream data – as classification features. Categories from the well-
known MIT Lincoln Laboratory attack-centric taxonomy [16] were used as a point
of comparison to show that, for a defender, the new defense-centric taxonomy of-
fers greater utility for defenders.

2 Objective and approach

The objective of the present work is to produce a new attack taxonomy, termed a
defense-centric taxonomy, that organizes attacks by virtue of the way they manifest
as anomalies in sensor data. An attack that can be detected in system-call sensor
data (monitored from the operating system) is said to manifest in system-call data;
the way it manifests is central to the taxonomy.1 Anomaly-based detectors play an
important role in detecting not only extant attacks, but also novel attacks; hence the
present emphasis on anomaly-based detection systems. Given an anomaly-based
detection system, any attack that manifests as a particular kind of anomaly would
be classified according to that anomaly type. Consequently, all attacks similarly

1Note that some attacks may not manifest in sensor data; either by accident or by design, an attack
may not manifest in a way that makes it visible in a particular sensor stream.
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classified would manifest as the same kind of anomaly, and hence be detectable by
any detector that is capable of detecting that type of anomaly (ergo steps 9 and 10
below).

The approach is straightforward, albeit laborious, consisting of the following
broad steps.

1. Develop an attacker-defender testbed.
2. Assemble a collection of system programs which are known to be vulnera-

ble to attack; develop attacks to exploit the vulnerabilities of these system
programs.

3. Run these system programs, launching the attacks against them, to observe
their behavior under attack; gather attack records from sensor data.

4. Run these system programs again, this time native, to observe their normal
behavior; gather normal records from sensor data.

5. Extract attack manifestations from the program’s behavior as monitored by
sensor data on the testbed.

6. Build a taxonomy that is defense-centric.
7. Check that it obeys classic taxonomic rules.
8. Validate the taxonomy by acquiring convergent evidence from an intrusion-

detection system.
9. Choose an attack-centric taxonomy against which to compare the new defense-

centric taxonomy.
10. Determine whether the manifestations mirror the classes of the two taxon-

omy types, or not.

3 Related work – attack taxonomies

This section provides an overview, inevitably and regrettably brief due to space
limitations, of some of the (surprisingly voluminous) existing work that addresses
the issue of attack taxonomies. The selected references below are believed to be
the best known and most representative of the taxonomies in the open literature,
but they are by no means the only ones available; there are many that could not
be mentioned here. The taxonomies reviewed here have been grouped into rough
categories: flaw classifications, signature classifications, and attack-effect classifi-
cations.

As a precursory note, Puketza and his colleagues were implicit early promot-
ers of the importance of taxonomy in the field of intrusion detection. Although
they did not design a taxonomy, per se, they plainly stated a useful taxonomic cri-
terion: the classes should ideally “be selected such that, within each class, either
the IDS2 detects each intrusion, or the IDS does not detect any intrusions” [19,
p.723]. They note that software testers term this distinction equivalence partition-
ing, which bears a similarity to the present work on defense-centric taxonomies;
it doesn’t constitute a taxonomy, but it’s suggestive of a mechanism that could be
used by a defender. In a defense-centric taxonomy, all attacks in one class should
be detectable by the same intrusion detection mechanism.

2IDS: Intrusion Detection System        
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Flaw classification. Landwehr and his colleagues devised a taxonomy of the
types of program security flaws (e.g., buffer overflows) that facilitate attacks [12].
Their taxonomy was meant to identify problematic aspects in the system design
process, a period during which security flaws are likely to be introduced into code.
As such, this taxonomy was designed to help system designers and programmers
create more secure systems. Matt Bishop took a similar approach with his vul-
nerability taxonomy, designed to elucidate those characteristics of a program that
might allow it to be exploited in an attack [3]. By being aware of such character-
istics, design auditors can more easily detect vulnerabilities before they are found
and exploited by attackers. In this regard, Bishop’s taxonomy of vulnerabilities is
similar to Landwehr’s taxonomy of security flaws. Aslam [2] proposed a taxon-
omy of flaws that he referred to as “security faults.” He broadly classified attacks
into three high-level taxonomic classes: coding faults introduced during software
development; operational faults which result from improper software installation;
and environment faults when a program is used in an environment for which it was
not intended. Operational faults and coding faults are further subdivided. The pri-
mary motivation of this taxonomy was to make attack classes unambiguous. Lack
of ambiguity was important for Aslam’s goal of organizing known security flaws
into a vulnerability database. Krsul [10] built upon Aslam’s work and constructed
his own taxonomy of software vulnerabilities in which the class to which a vul-
nerability belongs depends primarily on programmers’ assumptions. For example,
one common assumption is that the length of an environment variable passed to a
program is of at most a certain length. This assumption sometimes causes program-
mers to copy the environment variable to a memory location of insufficient length,
thereby causing a buffer overflow. Vulnerabilities are grouped based on the simi-
larity of the mistaken assumption that introduced the vulnerability. By identifying
and organizing the flaws, vulnerabilities, or faults which have security implica-
tions, these taxonomies all aim to help system designers and programmers. Hence,
designers and programmers, rather than system administrators and defenders, are
the target audience of flaw taxonomies.

Signature classification. Kumar proposed a taxonomy of attacks based on the
complexity of the signature by which an attack is detected [11]. Attacks manifest
in sensor data by virtue of a detectable signature. The simplest class of attacks
is what Kumar called the existence class; the attack manifests (in sensor data) as
a single event which can be detected by recognizing that particular event. Other
attacks may manifest as sequences of events that are detectable only with regular
expressions, i.e., by finite automata. It takes less computational power to test each
simple event in a sequence for equality than it takes to determine that that sequence
of events matches a regular expression. Kumar’s taxonomy expresses this “detec-
tion complexity” in an ordering from computationally facile to computationally
demanding. Although Kumar classified attacks based on their manifestations in
sensor data, as is done in the present work, his manifestations were brought to bear
on the difficulty of signature detection, not on the presence of particular kinds of
manifestations. In addition to being quite abstract, Kumar’s taxonomy was specif-
ically tailored as an aid in signature-based detection, not anomaly-based detection,
which is of present concern. Since his taxonomy mainly rank orders signatures
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Developing a Defense-Centric Attack Taxonomy

User to Root

Remote to Local

Denial of Service

Surveillance / Probe

Figure 1: The four-class, attack-centric taxonomy used by Lincoln Laboratory in
the 1998 DARPA IDS evaluations.

according to their complexity, it is unclear how it can be useful to defenders or
researchers trying to anticipate new and novel attacks, for which signatures do not
already exist.

Attack-effect classification. Many investigators have proposed taxonomies
that classify attacks based on the intended effect of the attack, from the attacker’s
perspective. An example of an attack effect is the elevation of an attacker’s privi-
leges from user to root. Often these taxonomies incorporate the technique by which
the attacker achieves this effect, such as automated password-guessing. Lindqvist
and Jonsson [14] presented such a taxonomy using these two dimensions of an
attack. Marcus Ranum [20] grouped attacks into eight intuitive categories based
on techniques used by the attacker: social engineering, impersonation, exploits,
transitive trust, data driven, infrastructure, denial of service, and magic. Howard
and Longstaff [9] incorporated classes of attack techniques used, and attack effects
desired, into their incident taxonomy, which also includes classes of attackers and
objectives. Daniel Weber [30] proposed an attack taxonomy based on three ele-
ments: the level of privilege required by the attacker (e.g., a local user account on
the target machine), the means by which the attack proceeded (e.g., exploitation
of a software bug), and the intended effect of an attack (e.g., temporary denial of
service) or the privilege level obtained in the attack (e.g., administrative or ‘root’
access for the attacker). Lippmann and his colleagues [15, 16] at MIT’s Lincoln
Laboratory adapted Weber’s taxonomy, reducing it to fewer, more intuitive classes,
based solely on the effect of the attack.

In taking an attack-effect perspective, these taxonomies are attack-centric in
that they classify attacks based on features potentially unknowable by a defender;
for example, a defender is not likely to be aware of vulnerabilities in software,
at least not in a way that can facilitate effective detection-level defenses against
exploitations. Consequently, the utility to a defender of these attack-centric tax-
onomies is questionable.

Possibly the best known of these taxonomies, due to its extensive exposure
during the DARPA 1998-99 intrusion detection evaluation program, is the Lincoln
Laboratory attack taxonomy [16]. The Lincoln taxonomy was attack-centric, and
contained four classes: user-to-root, remote-to-local, denial-of-service and surveil-
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lance/probe. These will be discussed in greater depth in a subsequent section.
The MIT Lincoln Laboratory taxonomy is probably one of the best known attack-
centric attack taxonomies, and for that reason it is used here as a basis of compari-
son to highlight the differences and advantages of a defense-centric taxonomy. The
Lincoln taxonomy is depicted in Figure 1.

What’s wrong with the aforementioned taxonomies? Essentially, nothing is
wrong with them; they simply serve purposes different from the defense-centric
taxonomy addressed in this paper (except Kumar’s taxonomy, whose limitations
were discussed above). We would like to see if these taxonomies are as useful to a
defender as one that is explicitly designed for a defender’s use.

4 Criteria for an effective taxonomy

Before building a new taxonomy, it seems appropriate to consider what might con-
stitute sensible criteria for judging its merits when finished. Although the heart of
taxonomy lies in the biological sciences (e.g., [22, 23]) in which there is mild con-
troversy regarding the correct way to construct a taxonomic classification scheme,
many authors in computer security have nevertheless proposed such criteria. Rec-
ommendations tend to vary widely, with some unachievable, some redundant, and
some not clearly applicable. Lough has done a rather thorough job of reviewing
the various taxonomies offered by the computer security community, as well as the
criteria for evaluating them [17].

A decision was made in the present work to select minimal criteria which
seemed sensible and, at the same time, most consistent with guidelines in biology
and systematics (the classification and study of entities with regard to their natural
relationships). The criteria used here for judging the effectiveness of a taxonomy
are:

• Mutual exclusivity: categories do not overlap, preventing ambiguities from
arising;

• Exhaustivity: all objects or events are contained in the taxonomy;
• Replicability: repeated attempts at classification of the same objects or events,

whether by the original or other experimenters, replicates faithfully the as-
signment of objects or events to taxonomic classes.

5 Methodology

This section presents the procedures by which the study was conducted, including
a sketch of the hardware/software suite used for launching and monitoring attacks.

5.1 Construct attacker-defender testbed

An attacker-defender testbed is a carefully controlled environment on which to
launch attacks on or against a target system, and to observe the effects of those
attacks. It comprises, at minimum, an attacker machine and a victim (target) ma-
chine, plus a network joining the two. The testbed is isolated from non-testbed
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machines and from the Internet. The architecture for the attacker-defender testbed
used in this work could have been selected from a range of systems: Windows,
Mac, Linux, etc. Linux on an Intel-based computer was chosen because of the
wide variety and ease of availability of attacks against it, and because much of the
work in intrusion detection is rooted in Unix.

The victim hardware was a commercial, off-the-shelf machine equipped with
a 450 MHz AMD K6 processor, 256 MB of memory, a single 8GB hard disk, and
a 10 / 100 Mbps Ethernet network card. The victim operating system, installed on
the hardware, was standard RedHat Linux 6.2.

The sensor stream of interest was system calls, based on the idea that sequences
of operating-system calls contain anomalous manifestations of attacks; when an
attack occurs, its presence is expected to be indicated by deviations from normal
system-call behavior [6]. Special software (a kernel patch) is required for moni-
toring system calls. This work used the IMMSEC kernel patch by Somayaji and
colleagues at the University of New Mexico [24]. The installation procedure is (a)
obtain the source code for the version 2.2.13 Linux kernel, (b) apply the IMMSEC
patch to this source code, (c) build the modified Linux kernel, and (d) install the
new kernel on the victim system.

The victim system was configured to allow only ssh connections from the
network. It was connected to a private research network largely isolated from the
Internet by a firewall. Other machines on the same network were used for launch-
ing attacks and for assisting in the simulation of normal behavior.

5.2 Acquire vulnerable programs & attacks

A collection of vulnerable programs and corresponding attacks upon these pro-
grams was assembled so that attacks could be mounted against the testbed, and
their manifestations observed in a controlled environment.

Programs. What makes a program vulnerable to attack is that (a) the program
runs with privileges higher than those possessed by the would-be attacker and (b)
some flaw in the program is susceptible to malicious exploitation. An example of
such a flaw is writing to an unchecked buffer; arbitrary data is written to a fixed-
length area of memory without first checking that the length of the data does not
exceed the length of the buffer. A buffer overrun or buffer overflow occurs when
more data is written into the buffer than the buffer can hold. When a buffer is
overrun, the extra data overwrites other data structures (e.g., a return pointer which
tells a program running a particular function the address of the machine instruction
to execute after the function terminates). A buffer overrun can be exploited by an
attacker so as to overwrite a return pointer, making it point to machine instruc-
tions that the attacker wishes to execute, e.g., to give the attacker an interactive
command-line interface with superuser privileges (a so-called “rootshell”). With
such a rootshell, the attacker has effectively gained all the privileges of the vulner-
able program.

One kind of program that is often attacked is a system program, two exam-
ples of which are passwd and tmpwatch. A system program runs with elevated
privileges (e.g., root privileges, which allow the program to read, write, modify,
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delete or execute any file) beyond those normally afforded a regular user of a sys-
tem, making these programs favorite targets of attackers. For this study, eighteen
vulnerable system programs were culled from the well-known public repository of
vulnerability information, SecurityFocus [21], and installed on the victim system
of the attacker-defender testbed. The eighteen programs are shown in Table 1.

dip diskcheck dump
imwheel kon2 ntop
restore slocate sudo
su passwd tmpwatch
traceroute vim xfs
xlock xman xterm

Table 1: Vulnerable system programs used in the study. Vulnerabilities reside in
the programs, except for passwd, whose vulnerability is due to a Linux kernel
race condition.

Attacks. Once the vulnerabilities were established, attacks were needed to ex-
ploit the vulnerabilities. Attacks are often available as source code to a program
that will automatically exploit the vulnerability. In some cases, this so called “ex-
ploit code” was available on public repositories and was downloaded. In other
cases, exploit code was written from scratch using available information about the
vulnerability. A selection of these exploit codes were copied and modified, mak-
ing variations of an attack, each of which exploited the same vulnerability but
which might manifest in different ways. The modifications were guided by pre-
vious work in which we identified methods to cloak an attack, making it harder
to detect with an anomaly-based intrusion detection system [26, 29]. Once exploit
code was downloaded or written, the attack consisted of compiling the exploit code
and launching the resulting program against the target machine. It was confirmed
that each attack worked as intended. Twenty-five attacks were collected for this
project, and they are listed in Table 2.

5.3 Gather sensor records of attack behavior

During each attack, the behavior of the vulnerable system program, in terms of
sequences of system calls generated by the program, was monitored and recorded
via the system-call sensors deployed on the testbed. Table 3 shows an excerpt
from a system-call log. The numbers indicate the process IDs of the processes that
made the system calls. In this example, four different processes were executing
(i.e., processes with IDs 5260 through 5263). The names of the system calls being
executed were brk, lstat, etc. The actual record specifies system-call numbers,
rather than names (e.g., brk corresponds to system call number 45); the call names
in the figure were transcribed for readability.

For each of the twenty-five attacks, sensors monitored the vulnerable system 
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crontabrace kernelexecptrace[3] sulocalefmt
dipbuff killxfs tmpwatchexec
diskcheckrace kon2buff traceroutefree
diskcheckrace[2] ntopspy traceroutefree[2]
dumpbx restorecool traceroutefree[3]
imwheelbuff restorecool[2] xlockfmtstring
imwheelbuff[2] slocateheap xmanprivs
kernelexecptrace sudomem xtermdos
kernelexecptrace[2]

Table 2: The 25 attacks. Square brackets [] denote secondary [2] and tertiary [3]
versions of attacks.

program that was exploited in the attack. In some cases, the attacker ran the sys-
tem program directly, in such a way as to exploit its vulnerability. In other cases,
the attacker modified the environment in which a system program ran, and waited
for the system administrator (or a scheduling program that performs regular ad-
ministrative tasks, e.g., the cron daemon) to run the vulnerable system program.
Whether the attacker ran the system program directly, or it was run by other means,
the sensors detected when the system program was run, and monitored the system
calls it made.

The sensors were configured to monitor one system program at a time – just
the system program being exploited in an attack. Sensors were enabled before the
attack began, and remained operational for the attack’s duration. When the system
program under attack exited, either naturally (e.g., through an exit or execve
system call) or prematurely (e.g., in an attempt to execute an illegal instruction, or
a memory segmentation violation), the sensors were disabled, and the record of the
system program’s behavior (i.e., series of system calls) during attack was recorded
to permanent storage. This record is the attack record. Twenty-five attack records
were collected, one for each attack.

5.4 Gather sensor records of normal behavior

The attacks used to exploit the system programs were examined to identify the
exact nature by which the misuse took place. For example, an attack could sup-
ply an extraordinarily long value for an environment variable, causing a buffer to
overflow. In addition, the documentation accompanying each vulnerable system
program (e.g., its “man page”) was reviewed to collect examples of intended pro-
gram usage. An intended-usage example was selected which correctly used the
features of the program misused by the attacker. The vulnerable system program
was invoked as described in the selected example to produce a representative in-
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5261 brk 5262 chdir 5262 fork
5261 brk 5262 lstat 5261 wait4
5261 brk 5262 open 5263 lstat
5261 lstat 5262 fstat 5263 chdir
5261 getdents 5262 fcntl 5263 lstat
5261 lstat 5262 brk 5263 open
5261 access 5262 lstat 5263 fstat
5261 fork 5262 getdents 5263 fcntl
5260 wait4 5262 lstat 5263 lstat
5262 lstat 5262 access 5263 getdents

Table 3: Excerpt of system-call stream (reading down the columns), as monitored
by the testbed; numbers are process IDs, and names are system-call names.

stance of the normal behavior of the program.3 The example was chosen so that this
normal behavior would reflect the behavior during attack, excepting the presence
of the attack itself. As an example, if an attacker supplied an exceptionally long
value for an environment variable, the selected example of intended usage would
set the same environment variable to an appropriate value, as discerned from the
documentation. The record of a system program’s normal behavior (series of sys-
tem calls) during intended usage was produced in much the same way as the record
of that system program’s behavior during attack. The resulting record is called the
normal record. Twenty-five normal records were collected, one for each attack.

5.5 Extract attack manifestations

An attack that can be detected in system-call sensor data is said to manifest in
system-call data. The manifestation comprises those sequences of system calls
which are due to the presence or activity of the attack, and which would not appear
if there were no attack. Attack manifestations were identified as follows.

(1) The corresponding attack record and normal record were compared to ex-
pose sequences of system calls differing between the two records. Some sequences
may appear only in the attack record, while others may be missing from the at-
tack record. (2) Sequences of instructions were extracted which, when executed,
resulted in differences between sequences of system calls in normal and attack
records. The exploit code used in the attack, as well as the source code of the
vulnerable system program, were consulted to help identify the sequences of in-
structions due to the presence of the exploit code. If such instructions appear in
the exploit code, the corresponding system calls in the attack record are due to the
attack. (3) Supplemental tools were used to gather supporting evidence regarding
the effects of the attack on the system call record. For example, the strace4 pro-

3Space limitations preclude full exposition of the normal-behavior methodology which is avail-
able elsewhere.

4The strace program is used to intercept and record the system calls that are made by a program
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gram can be used to provide a detailed report of the interaction between a program
and the operating system. The strace program was used to associate the pres-
ence of an attack with specific sequences of system calls in the attack record. To
ensure that the strace records showed an alternative view of the same behavior
as the corresponding attack or normal record, it was confirmed that the information
included in both records (i.e., sequences of system calls) matched; they did.

5.6 Build a defense-centric taxonomy

A taxonomy is a classification aid, and any classifier must do its job on the basis of
features that can discriminate one object or event from another. Consequently, the
first step in building a taxonomy is to determine the features upon which the clas-
sification will be based. In the present case, the features need to exist in the attack
manifestations previously discussed, and they need to be accessible to anomaly-
based detection systems, because these are the types of detection systems that will
form the basis of future defense-centric strategies [4, 5, 13].

Features of anomalous sequences were previously studied by Maxion and Tan
[18]. In their discussion of coverage of anomaly detectors, they identified foreign
symbols and foreign sequences as specific types of anomalies that can occur in any
set of sequential, categorical data (like the system-call data used here). In later
work they identified, and discussed in detail, another fundamental anomaly type,
the minimal foreign sequence, which is a refinement of the foreign-sequence con-
cept [27, 28]. Foreign symbols and minimal foreign sequences were used in the
present work as basic taxonomic features of attack manifestations in system-call
sensor data. Close examination of the attack records revealed two additional mani-
festations that were also used as features – dormant sequences and non-anomalous
sequences. The four features, observed in sensor data as attack manifestations, are
defined as follows, with examples shown in Table 4:

1. Foreign symbol: the attack manifestation contains a system call which never
appears in the normal record.
2. Minimal foreign sequence: the attack manifestation contains a system-call se-
quence which itself never appears in the normal record, but all of whose proper
subsequences do appear in the normal record.
3. Dormant sequence: the attack manifestation contains a sequence of system
calls which matches a proper subsequence from the normal record but does not
match the full sequence, because it is, for example, truncated.
4. Non-anomalous sequence: the attack manifestation is a sequence of system
calls which exactly and entirely matches a normal sequence; that is, the attack
produced a set of system calls that matched the system calls for a normal, attack-
free program.

The hypothesis of this study is that the class to which an attack belongs ought
to predict whether or not a particular intrusion-detection system will detect a given

and the signals that are received by the program. It is a commonly used debugging tool [25].
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Sequence type Example

Normal Sequence A A A B B B
Foreign Symbol A A C B B B (the C is foreign)

Normal Sequence A A A B B B
Min. Foreign Seq. A A A A B B (4 As is min. foreign)

Normal Sequence A A A B B B
Dormant Sequence A A A B (missing 2 Bs)

Normal Sequence A A A B B B
No Anomaly A A A B B B (no difference)

Table 4: Sequence types and examples.

attack. The information upon which this prediction is based is the presence or ab-
sence of the features listed above. The features themselves were used as taxonomic
classes.

The features are not mutually exclusive; for example, it is possible for a mani-
festation to contain both foreign symbols and minimal foreign sequences. There is
a precedence, however, among the taxonomic classes which reflects the difficulty
of detection. A foreign symbol takes precedence over a minimal foreign sequence,
which is harder to detect. Likewise, a minimal foreign sequence takes precedence
over a dormant sequence; and a dormant sequence takes precedence over a se-
quence containing no anomalies. To remove any ambiguity in the class to which
an attack belongs, a decision procedure, shown in Table 5 , was constructed for
uniquely identifying the class of any attack.

Class 1 (FS): If an attack’s manifestation contains one or more foreign
symbols, classify the manifestation as foreign symbol.
Class 2 (MFS): If an attack’s manifestation contains no foreign symbols,
but does contain one or more minimal foreign sequences, classify the man-
ifestation as a minimal foreign sequence.
Class 3 (DS): If an attack’s manifestation contains no foreign symbols or
sequences but does contain a dormant sequence, classify the manifestation
as a dormant sequence.
Class 4 (MNA): If an attack’s manifestation contains no foreign symbols or
sequences, and no dormant sequences, the manifestation is indistinguish-
able from the normal record; classify the manifestation as not anomalous.

Table 5: Procedure for determining class of attack.

For each of the twenty-five attacks in this study, the features of each attack   
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were identified. In Table 6, each of the twenty-five attacks is listed, one per row.
The four features are listed in the first four columns of the table. The presence
or absence of each of the four features is denoted by a mark in the appropriate
column. Using the decision procedure, the class to which each of the twenty-five
attacks belongs is determined. It is listed in the fifth column of Table 6.

5.7 Check that taxonomic rules are obeyed

The new defense-centric taxonomy should meet the criteria established in Section
4 for acceptable taxonomies. Briefly, these criteria are (1) mutual exclusivity, (2)
exhaustivity, and (3) replicability. Both theoretical and empirical evidence were
collected to confirm that the taxonomy meets each of these criteria.

Theoretical evidence that each of these criteria is satisfied was obtained by re-
viewing the decision procedure described in Table 5. For mutual exclusivity, the
decision procedure was reviewed to determine that it was not possible for an arbi-
trary attack manifestation to be identified with more than one class. For exhaus-
tivity, the decision procedure was reviewed to determine that it was not possible
for an attack to “fall through the cracks” and belong to none of the classes. For
replicability, the language of the decision procedure was reviewed to ensure that
there was no ambiguity which would cause different taxonomists to decide that an
arbitrary attack’s manifestation might belong to different classes.

Empirical evidence was gathered by determining whether or not the collected
attacks and the classifications of these attacks violated any of the taxonomic prop-
erties. For mutual exclusivity, it was confirmed that none of the attacks belonged
to multiple classes. For exhaustivity, it was confirmed that all the attacks belonged
to one of the four classes. For replicability, it was confirmed that diverse clas-
sifications of each of the attacks (e.g., different tools, different evaluators, etc.)
produced the same results, i.e., that the same attacks were always assigned to the
same categories.

5.8 Validate taxonomy using IDS evidence

For the purposes of this study, the taxonomy’s utility to a defender lies in its abil-
ity to predict whether or not an intrusion detection system (IDS) will detect an
attack based on the attack’s taxonomic classification. The taxonomy’s utility is de-
termined by running all 25 attacks through an intrusion detection system to verify
that the detector “sees” all the attacks in a class in the same way; i.e., if the detector
scores attack detections on a scale from 1–3, then all attacks in a class should get
the same score. The Stide anomaly-based IDS was used, because it operates on the
same kind of sequential system-call data as used here, and because the taxonomy
was designed around attack manifestation features significant to the performance
of sequence-based detectors in general, of which Stide happens to be one. Stide is
described elsewhere in great detail [7].

For each of the 25 attacks, the normal record for the attack was run through
Stide’s training mode to establish a model of normal behavior. The attack record
was then run through Stide’s detection mode, and a score was assigned on the basis
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of the extent to which Stide detected the attack. Stide was configured with a locality
frame of 1, so that all of the anomalies visible in the current detector window would
be reported, regardless of whether or not there was a recent history of anomalies
(this is the most stringent configuration of Stide). The detector window size was
varied broadly, from 1 to 15, inclusive. If one or more anomalies were reported
at every window-size setting, the attack was judged to be always detectable, and a
score of 3 was assigned for the attack. If one or more anomalies were reported at
some window settings, but none were reported at others, the attack was ruled to be
sometimes detectable, and a score of 2 was assigned for the attack. If no anomalies
were reported at any window setting, the attack was judged to be never detectable,
and a score of 1 was assigned for the attack. The attack scores are given in the last
column of Table 6.

To verify that the performance of the intrusion detection system was predicted
by the defense-centric taxonomy, the defense-centric taxonomic class of each of
the twenty-five attacks was compared to the detector score for the attack. If the
taxonomic class is a good indicator of the score, then the taxonomy is said to
predict detector performance. Table 6 shows that the predictions are perfect.

5.9 Choose contrasting attack-centric taxonomy

This paper asserts that a defense-centric taxonomy is a better predictor of detec-
tor performance than an attack-centric taxonomy. To validate this claim requires a
comparison to be made between the two taxonomy types. The attack-centric tax-
onomy from Lincoln Laboratory [16] (hereafter denoted Lincoln taxonomy; also
see Figure 1) was selected for side-by-side comparison, because it is well known
and familiar to the computer security community, and because it is attack centric
(i.e., attacks are classified according to the attacker’s goal). With respect to the 25
attacks used in this study, the Lincoln taxonomy obeyed taxonomic requirements
of mutual exclusivity and replicability, but not exhaustivity.

Four of the 25 attacks did not fit the Lincoln taxonomy. Two of the attacks
(slocateheap and xmanprivs) would be used by an attacker to elevate privi-
leges to those of a system-level (not root) user, e.g., users granted special privileges
to manage online documentation or filesystem-wide indexes of files. Two other at-
tacks (crontabrace and diskcheckrace) would be used by an attacker to
create files in unauthorized locations. None of these four attacks can be assigned
to any of the Lincoln classes.

To accommodate this shortcoming, the origins of the Lincoln taxonomy were
examined. The Lincoln taxonomy was derived from a more elaborate taxonomy by
Weber [30], apparently by grouping together classes from the Weber taxonomy into
more general classes in the Lincoln taxonomy. The four attacks which could not be
classified by the Lincoln taxonomy were found to belong to classes in the Weber
taxonomy. By creating a fifth class and supplementing the Lincoln taxonomy with
this fifth class, called “System access / Alter data,” an attack-centric taxonomy
was created which met all the requirements such that a comparison between the
attack-centric Lincoln taxonomy and the present defense-centric taxonomy could
proceed.
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1. kernelexecptrace x FS 3
2. imwheelbuff x FS 3
3. slocateheap x FS 3
4. sudomem x x FS 3
5. dipbuff x x FS 3
6. traceroutefree x x FS 3
7. crontabrace x MFS 2
8. dumpbx x MFS 2
9. kernelexecptrace[2] x MFS 2
10. killxfs x MFS 2
11. kon2buff x MFS 2
12. ntopspy x MFS 2
13. restorecool x MFS 2
14. sulocalefmt x MFS 2
15. traceroutefree[2] x MFS 2
16. xlockfmtstring x MFS 2
17. xmanprivs x MFS 2
18. xtermdos x MFS 2
19. imwheelbuff[2] x DS 1
20. kernelexecptrace[3] x DS 1
21. diskcheckrace x MNA 1
22. diskcheckrace[2] x MNA 1
23. restorecool[2] x MNA 1
24. tmpwatchexec x MNA 1
25. traceroutefree[3] x MNA 1

Table 6: Attacks, detected features, taxonomic classification, and IDS performance
scores. Taxonomic classes: FS (class 1, foreign sequence), MFS (class 2, minimal
foreign sequence), DS (class 3, dormant sequence), MNA (class 4, manifestation
not anomalous). IDS scores: 1 (never detectable), 2 (sometimes detectable), 3
(always detectable). Classes 3 and 4 are assigned the same score of 1, because
neither is detectable by the IDS. See discussion, Section 5.8.

5.10 Compare attack/defense-centric taxonomies

Each of the 25 attacks was classified according to both the Lincoln attack-centric
taxonomy and the new defense-centric taxonomy. Each attack belongs to a pair
of classes, one attack-centric and one defense-centric. If the two taxonomies are
equivalent, from a defender’s perspective, then a single attack-centric class should
always be paired with a single defense-centric class, with no overlap. This was not
found to be the case
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Attacks in three of the Lincoln classes mapped to multiple defense-centric
classes (the surveillance/probe class contained no attacks, because there is such
controversy over whether or not a probe constitutes an attack). Four attacks in the
Lincoln user-to-root class mapped to four different defense-centric classes. At-
tacks spanning three Lincoln classes mapped to just one defense-centric class. The
mappings are shown in Figure 2; unfortunately, space limitations preclude a more
detailed illustration.

Defense−centric Taxonomic Classes

Manifests as Foreign Symbol

Manifests as Minimal Foreign Sequence

Manifests as Dormant Sequence

Manifestation Not Anomalous

System access / Alter data

Surveillance / Probe

Denial of Service

Remote to Local

User to Root

Attack−centric Taxonomic Classes

Figure 2: Mapping of 25 attacks between the five Lincoln Laboratory attack-centric
classes (see Section 5.9) and the four new defense-centric classes.

6 Results and discussion

Twenty-five attacks were categorized in accordance with each of two taxonomies –
an existing attack-centric taxonomy (from Lincoln Lab) and a new defense-centric
taxonomy. Two major outcomes were: (1) a validation of the claim that a defense-
centric taxonomy can predict whether or not an intrusion detection system is capa-
ble of detecting all attacks in particular classes of attacks; and (2) a comparison of
the predictive power of an attack-centric taxonomy vs. a defense-centric taxonomy.

In every case, the classification of an attack according to the defense-centric
taxonomy perfectly predicts the detector’s ability to detect the attack. This outcome
demonstrates that a defense-centric taxonomy is a capable predictor of whether or
not an intrusion detection system can detect a given attack and all attacks in a class.
Demonstrating this was a major goal of the research. The results are depicted in
Table 6.

In terms of comparing the predictive capabilities of attack-centric vs. defense-
centric taxonomies, from the perspective of a defender who needs to know whether
or not his/her detector will detect a particular attack, the defense-centric taxonomy
was an accurate predictor, whereas the attack-centric taxonomy was not. The pri-
mary reason for the inaccuracy of the attack-centric taxonomy is exemplified by
there having been four different user-to-root (attack-centric) attacks that mapped
to four different defense-centric classes. This suggests that knowing an attacker’s
goals, e.g., privilege elevation from user to root, tells a defender little about what
evidence would be left behind in sensor data, should the attacker’s objective be ac-
complished. Conversely, that many attack-centric classes map to a single defense-
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centric class suggests that it would be difficult for a defender, looking at the mani-
festation of an attack in the sensor data available, to discern what the attacker was
attempting to accomplish with the attack. The results are illustrated in Figure 2.

It is not the purpose of this work to disparage any attack-centric taxonomy.
Attack-centric taxonomies have their place, but not necessarily in the service of
intrusion detection. For example, a defender could use the attack-centric class of
an attack to estimate the severity of the attack and its likely effect on the defender’s
organization. If a novel remote-to-local attack were discovered on a weekend, the
system administrator might be called into work to take immediate action to guard
against the attack, whereas if the attack were denial-of-service, the defensive action
could be postponed until Monday. The two taxonomy types could complement one
another, with the attack-centric taxonomy being used to estimate the severity of an
attack, and the defense-centric taxonomy being used to determine the suitability of
defenses.

7 Conclusion

This work has demonstrated that the classes of an attack-centric taxonomy are
not equivalent to those of a defense-centric taxonomy. While a defense-centric
taxonomy can be used successfully to predict whether or not a set of defenses is
capable of detecting a particular attack based on its classification in a taxonomy,
an attack-centric taxonomy cannot be used in this way. This is more alarming than
it is surprising, because defenders presently have no alternatives to various extant
attack-centric taxonomies, many of which were noted in Section 1. This work has
produced the first known, validated defense-centric taxonomy5. It is hoped that
others will follow.

5Section 3 acknowledges Kumar’s contribution, as well as its limitations, in terms of defense-
centricity.
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